Mechanical perturbation of filamin A immunoglobulin repeats 20-21 reveals potential non-equilibrium mechanochemical partner binding function
نویسندگان
چکیده
The actin crosslinking protein filamin A (FLNa) mediates mechanotransduction, a conversion of mechanical forces into cellular biochemical signals to regulate cell growth and survival. To provide more quantitative insight into this process, we report results using magnetic tweezers that relate mechanical force to conformational changes of FLNa immunoglobulin-like repeats (IgFLNa) 20-21, previously identified as a mechanosensing domain. We determined the force magnitudes required to unfold previously identified structural organizations of the β-strands in the two domains: IgFLNa 20 unfolds at ~15 pN and IgFLNa 21 unfolding requires significantly larger forces. Unfolded domain IgFLNa 20 can exist in two different conformational states, which lead to different refolding kinetics of the IgFLNa 20 and imply a significant impact on the reformation of the domain pair at reduced force values. We discuss the relevance of the findings to force bearing and mechanosensing functions of FLNa.
منابع مشابه
Phosphorylation facilitates the integrin binding of filamin under force.
Filamins are actin binding proteins that contribute to cytoskeletal integrity and biochemical scaffolds during mechanochemical signal transductions. Structurally, human filamins are dimers composed of an actin-binding domain with 24 immunoglobulin (Ig)-like repeats. In this study, we focus on the recently solved high-resolution crystal structure of Ig-like repeats 19-21 of filamin-A (IgFLNa-R19...
متن کاملStructural basis of filamin A functions
Filamin A (FLNa) can effect orthogonal branching of F-actin and bind many cellular constituents. FLNa dimeric subunits have N-terminal spectrin family F-actin binding domains (ABDs) and an elongated flexible segment of 24 immunoglobulin (Ig) repeats. We generated a library of FLNa fragments to examine their F-actin binding to define the structural properties of FLNa that enable its various func...
متن کاملDynamic force sensing of filamin revealed in single-molecule experiments.
Mechanical forces are important signals for cell response and development, but detailed molecular mechanisms of force sensing are largely unexplored. The cytoskeletal protein filamin is a key connecting element between the cytoskeleton and transmembrane complexes such as integrins or the von Willebrand receptor glycoprotein Ib. Here, we show using single-molecule mechanical measurements that th...
متن کاملFilamins: promiscuous organizers of the cytoskeleton.
Filamins are elongated homodimeric proteins that crosslink F-actin. Each monomer chain of filamin comprises an actin-binding domain, and a rod segment consisting of six (Dictyostelium filamin) up to 24 (human filamin) highly homologous repeats of approximately 96 amino acid residues, which adopt an immunoglobulin-like fold. Two hinges in the rod segment, together with the reversible unfolding o...
متن کاملStructural and Functional Evaluation of C. elegans Filamins FLN-1 and FLN-2
Filamins are long, flexible, multi-domain proteins composed of an N-terminal actin-binding domain (ABD) followed by multiple immunoglobulin-like repeats (IgFLN). They function to organize and maintain the actin cytoskeleton, to provide scaffolds for signaling components, and to act as mechanical force sensors. In this study, we used transcript sequencing and homology modeling to characterize th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013